先进成像

激光与光电子学进展

高光谱诊断外阴硬化萎缩性苔藓的初步探究

曲颖洁1,常淑芳2,徐晓嵘3*

¹安徽工程大学人工智能学院,安徽 芜湖 241000; ²重庆医科大学附属第二医院妇产科,重庆 400010; ³中国科学技术大学苏州高等研究院,江苏 苏州 215009

摘要为了比较外阴硬化萎缩性苔藓(VLS)组织和正常外阴组织高光谱的差别,得出各自的特点和规律,本研究通 过高光谱成像技术定量分析了40位VLS患者外阴皮肤组织中黑色素含量和血氧含量。实验结果表明,VLS组织中 黑色素含量指数和血氧含量指数均在统计学上低于正常外阴组织。因此,通过量化正常外阴组织和VLS组织中黑 色素含量指数和组织血氧饱和度指数之间的差异,高光谱成像技术为实现对VLS的在体辅助诊断提供了可能。 关键词 生物技术;高光谱成像;外阴硬化萎缩性苔藓;黑色素;组织血氧饱和度 中图分类号 O436 文献标志码 A doi: 10.3788/LOP202259.0617027

Preliminary Study of Vulvar Lichen Sclerosis Diagnosis Based on Hyperspectral Imaging

Qu Yingjie¹, Chang Shufang², Xu Xiaorong^{3*}

¹School of Artificial Intelligence, Anhui Polytechnic University, Wuhu, Anhui 241000, China; ²Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; ³Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215009, China

Abstract To compare the hyperspectral differences of the vulvar lichen sclerosis (VLS) tissue and normal vulvar tissue and extract their respective features, the melanin content and tissue oxygen saturation (StO_2) in the vulvar skin tissue of 40 patients with VLS were quantitatively analyzed via hyperspectral imaging. Our experimental results suggest that the melanin content index and StO_2 index in lesions are statistically lower than those in the normal vulvar tissues. Therefore, by quantifying the difference between melanin content index and StO_2 index in normal vulvar tissue and VLS tissue, hyperspectral imaging technology provides the possibility of *in vivo* assisted diagnosis of VLS. **Key words** biotechnology; hyperspectral imaging; vulvar lichen sclerosis; melanin; tissue oxygen saturation

1 引 言

外阴硬化萎缩性苔藓(VLS)是一种发生在女性外阴部位的慢性皮肤病^[14]。该病以皮肤瘙痒和 色素减退为主要临床特征,给患者的日常生活带来 诸多不便^[46],并且该病发展到晚期时,可能导致外 阴癌前病变甚至外阴癌^[7-8]。因此,早期诊断和有效 治疗有助于减少该病给患者带来的危害^[7,9-10]。目 前,医生通常将人工检查与各种评分系统结合起来 对VLS进行临床诊断^[11-13],但是这些评估方法高度

收稿日期: 2021-12-24; 修回日期: 2022-02-04; 录用日期: 2022-02-10 通信作者: ^{*}xux@ustc. edu. cn 依赖检查者的自我评价打分,主观性强,可能导致 不必要的活检,甚至延误治疗^[9,14]。鉴于此,有必要 考虑通过有效的影像学方法对VLS实现客观评估。

高光谱成像技术(HSI)是一种从遥感技术上发展而来的新兴光学影像技术。它将光学成像和光 谱分析两项技术结合到一种模式中,实现"图谱合 一",同时提供了目标物体的空间信息和光谱信息, 用于对目标物体中不同组成成分的准确识别和分 类^[15],为生物组织表征和光学诊断提供一个有效的 工具。近年来,HSI已经被广泛应用于对皮肤疾病 的诊断,尤其是对皮肤组织中黑色素含量和血红蛋 白含量的定量评估^[16-23]。研究表明,随着VLS的发 生,病变皮肤出现低氧缺血,并且颜色变白,失去色 素沉着。而这些变化可能导致该处皮肤组织中黑 色素含量和组织血氧饱和度的改变。因此,通过 HSI量化正常皮肤组织和VLS病变皮肤组织中黑 色素含量和组织血氧饱和度(StO₂)之间的差异性, 可实现对VLS的在体辅助诊断。

本文利用HSI客观评估了VLS患者外阴皮肤 中黑色素含量和StO₂。研究结果表明,VLS皮肤组 织中的黑色素含量指数和组织血氧饱和度指数均 在统计学水平上显著小于正常皮肤组织。这也表 明了使用HSI对VLS进行无创检测并进一步定量 评估VLS相关症状和体征(例如瘙痒、皮肤弹性和 肤色)的临床潜力。

2 实 验

2.1 高光谱成像系统

使用的高光谱成像系统主要由一个美国 Brimrose高光谱成像仪(Brimrose,Sparks,马里兰 州)和一个功率为500W的连续氙气光源(北京光 学世纪仪器有限公司,中国)组成,如图1所示。其 中Brimrose高光谱成像仪是一个连接到声光可调

滤波器的相机,采集目标区域的高光谱图像。以 2 nm的间隔采集目标区域450~650 nm波长的高光 谱图像,每一次的数据采集时间大约为50 s。

2.2 临床数据采集

本临床实验方案已获得重庆医科大学第二附属 医院机构审查委员会批准(IRB No:2018KLS092), 共计招募了40名18岁以上在活检中被诊断为VLS 的女性患者,每位受试者均收到参与研究的书面协 议,并签字表示同意。整个临床数据采集步骤如 图2所示,首先剃除受试者外阴部毛发,接着采集目 标区域的高光谱图像,最后进行常规阴道镜检查和 外阴活检,并记录下相关的临床症状。

图2 临床数据采集流程

Fig. 2 Flowchart of the clinical data collection process

2.3 临床数据分析

临床数据分析的整体流程如图 3 所示。在获取 了受试者的高光谱数据后,首先对外阴的原始数据 进行校正,利用聚四氟乙烯(PTFE)白板和暗图像 来消除波段之间因曝光时间不一致带来的误差。 数据采集过程中使用带有黑色标记的 PTFE 白板, 一方面是为了聚焦,另一方面是为了在后续的数据 处理中校正反射光强。该 PTFE 白板的光谱特性已 预先通过美国国家标准技术研究所(NIST)校准。 通过在曝光期间关闭照明并保持镜头盖住,可获得 暗 图 像 $I_{dk}(x, y, \lambda)$ 。校 正 后 的 反 射 光 谱 $R(x, y, \lambda)^{[24-25]}$ 为

$$R(x, y, \lambda) = \frac{\bar{I}_{v}(x, y, \lambda) - I_{dk}(x, y, \lambda)}{I_{board}(x, y, \lambda) - I_{dk}(x, y, \lambda)}, \quad (1)$$

式中: $\bar{I}_{v}(x, y, \lambda)$ 是外阴皮肤在空间位置(x, y)处, 波长为 λ 时的平均反射强度; $I_{\text{board}}(x, y, \lambda)$ 是覆盖外

特邀研究论文

阴的 PTFE 白板在空间位置(x, y)处,波长为 λ 时的平均反射强度。

接着对校正后的反射光谱进行分析。外阴皮 肤的吸收光谱与其反射光谱之间的关系^[26-27]为

$$A_{x,y}(\lambda) = -\log_{10} \left[R_{x,y}(\lambda) \right], \qquad (2)$$

式中:*R_{x,y}*(λ)表示校正后的反射光谱。考虑到黑色 素、氧合血红蛋白(HbO₂)和脱氧血红蛋白(Hb)是 可见光范围内皮肤组织的主要吸收剂^[26,28],因此皮 肤组织的吸收率可以近似为三个主要成分的吸收

$$A_{x,y}(\lambda) = a_1 \varepsilon_{HbO_2}(\lambda) + a_2 \varepsilon_{Hb}(\lambda) + a_3 \varepsilon_{Mel}(\lambda) + C_{x,y},$$
(3)

式中: $\epsilon_{HbO_2}(\lambda)$ 、 $\epsilon_{Hb}(\lambda)$ 和 $\epsilon_{Mel}(\lambda)$ 分别是HbO₂、Hb和 黑色素的消光系数值^[29]; $C_{x,y}$ 代表散射的影响; a_1 、 a_2 和 a_3 分别是HbO₂、Hb和黑色素的含量指数,可通 过最小二乘法反解得出。在得到HbO₂和Hb含量 指数后,可计算出组织血氧饱和度指数,表达式为

$$I_{\text{StO}_2} = \frac{a_1}{a_1 + a_2}$$
(4)

- 图3 计算外阴皮肤组织中黑色素含量指数和血氧饱和度指数的流程。(a)~(c)外阴组织、PTFE白板和暗背景的高光谱图像; (d)外阴组织在550 nm处的相对反射率图像;(e)从图3(d)点区域提取出的原始光强曲线和相对反射率曲线;(f)对应的 黑色素含量指数;(g)对应的血氧饱和度指数
- Fig. 3 Process for calculating melanin content index and StO₂ index in vulvar skin tissue. (a)-(c) Hyperspectral images of the vulva, PTFE board, and dark background; (d) relative reflectance image of the vulva at 550 nm wavelength; (e) the raw intensity curve and the relative reflectance curve retrieved from the dot area in Fig. 3 (d); (f) corresponding melanin content index; (g) corresponding StO₂ index

3 结果与讨论

图 4 为两名具有代表性的 VLS 患者的高光谱 分析结果,其中图 4(a)是两名患者的外阴阴道镜图 像,图 4(b)则是两名患者在 550 nm 波长处的外阴反 射光谱图像^[30]。图 4(a)椭圆区域是经验丰富的妇 科医生标注的可疑疾病区域,把医生标记的区域作 为病变感兴趣区域,标记区域外作为正常感兴趣区 域。在数据分析时,首先从每一个像素点中提取出 一条反射光谱,如图 4(c)所示,正常外阴组织的反 射光谱与 VLS 外阴组织的反射光谱存在明显差异 性;接着利用已经获取的外阴组织的吸收光谱,根 据光相互作用的线性模型,计算出每个像素点对应 的黑色素、氧合血红蛋白、脱氧血红蛋白的含量指 数;最后基于已知的氧合血红蛋白和脱氧血红蛋白 的含量指数,计算出相应的组织血氧饱和度指数。 图 4(d)、(e)展示了两名 VLS 患者的黑色素含量指 数和组织血氧饱和度指数,病变组织的黑色素含量 指数和组织血氧饱和度指数均低于正常组织。图 5 是所有 40例 VLS 患者的正常组织和病变组织之间 的黑色素含量指数和组织血氧饱和度指数的统计 对比图,其中病变数据点是在每例 VLS 患者的标记 区域内的大阴唇上随机选取 50个点后取平均得到 的,正常数据点是在每例 VLS 患者的标记区域外的 大阴唇上随机选取 50个点后取平均得到的。结果 表明黑色素含量指数和组织血氧饱和度指数可以 用于区分 VLS 组织与正常组织。

考虑到外阴组织主要包括大阴唇、小阴唇和阴

图4 两名VLS患者的高光谱分析结果。(a)外阴组织的阴道镜图像,其中圆圈是临床医生标注的可疑疾病区域;(b)外阴组 织在550 nm 波长处的相对反射率图像;(c)正常外阴组织和VLS组织之间的吸收光谱;(d)黑色素含量指数图; (e)血氧饱和度指数图

Fig. 4 Hyperspectral analysis results of two VLS patients. (a) Colposcopy images of the vulva, circles are the suspicious disease areas identified by the clinician; (b) corresponding relative reflectance images at 550-nm wavelength; (c) absorption spectra between normal tissues and VLS tissues; (d) melanin content index maps; (e) StO₂ index maps

图 5 40 例 VLS 患者黑色素含量指数和血氧饱和度指数的 统计对比

Fig. 5 Statistical comparison of melanin content index and StO₂ index of 40 VLS patients

蒂三个部分,而这三个部分的黑色素含量和血红蛋 白含量存在差异。因此,在研究外阴组织的光谱特 征中,需要考虑结构引起的误差,此外,还需要考虑 毛发对检测黑色素含量的影响。在本文中,通过在 检查前剃除被试者外阴部毛发和主要研究大阴唇 处的病变,来减少结构和毛发对高光谱数据分析的 影响。在对外阴皮肤组织的高光谱数据分析中,主 要考虑皮肤组织在可见光波段中最重要的三个吸 收剂:黑色素、氧合血红蛋白和脱氧血红蛋白。由 于病变组织中黑色素含量指数和组织血氧饱和度 指数均降低,影响了入射光的透射和衰减,导致病

变组织的吸收光谱发生变化,如图4(c)所示,VLS 组织与正常组织的吸收光谱之间有着明显的差异。 从VLS组织的吸收光谱曲线中可以看到氧合血红 蛋白的两个吸收峰,但这两个吸收峰在正常外阴组 织的吸收光谱曲线中并不明显,这可能与病变组织 中黑色素含量减少有关。由于病变区域黑色素含 量减少,光在病变组织内的传播深度要比在正常组 织中的传播深度大。因此,更多的光可以到达深层 血管并与血红蛋白相互作用,导致血红蛋白的吸收 光谱对病变组织吸收光谱的贡献率要比对正常组 织吸收光谱的贡献率大。虽然本文的初步实验结 果显示高光谱诊断的有效性,但是仍然存在一些问 题。首先,数据的样本量较小,仅有40例患者,且缺 乏其他外阴疾病的对比分析。由于未将外阴上皮 内瘤变和外阴鳞状细胞癌纳入研究,无法对高光谱 成像技术区分炎症性疾病和组织恶性转变的能力 进行评估。在未来的研究中,将增加样本数目,招 募更多患有其他外阴疾病的被试者,提高研究的可 靠性。其次,考虑到外阴结构的影响,仅仅研究了 大阴唇处的病变,忽略了其他部位的病变,在后续 工作中,将进一步研究发生在小阴唇和阴蒂的病 变。最后,只采集了可见光波段内的外阴组织高光 谱数据,而更宽的波长范围可以提供更多的光谱信 息,在未来的研究中,探测波长范围会被扩大到 $400 \sim 1000 \text{ nm}_{\odot}$

第 59 卷 第 6 期/2022 年 3 月/激光与光电子学进展

4 结 论

首先以2nm的间隔采集了450~650nm波长的外阴高光谱图像,接着研究了外阴正常皮肤组织和VLS皮肤组织的光谱特征,最后基于两者吸收光 谱特征的差异性,实现了对正常外阴组织和VLS组 织的区分。与目前使用的人工打分诊断方法相比, 本研究中使用的高光谱成像方法具有重要的临床 意义,高光谱成像方法不仅是非侵人性的,还能客 观地给出定量分析结果,为辅助医生在体诊断VLS 提供了可能性。

参考文献

- Suurmond D. Lichen sclerosus et atrophicus of the vulva[J]. Archives of Dermatology, 1964, 90: 143-152.
- [2] Wallace E G, Nomland R. Lichen sclerosus et atrophicus of the vulva[J]. Archives of Dermatology and Syphilology, 1948, 57(2): 240-254.
- [3] Powell J, Wojnarowska F. Lichen sclerosus[J]. The Lancet, 1999, 353(9166): 1777-1783.
- [4] Bleeker M C, Visser P J, Overbeek L I, et al. Lichen sclerosus: incidence and risk of vulvar squamous cell carcinoma[J]. Cancer Epidemiology, Biomarkers & Prevention, 2016, 25(8): 1224-1230.
- [5] Friedrich E G, Jr, MacLaren N K. Genetic aspects of vulvar lichen sclerosus[J]. American Journal of Obstetrics and Gynecology, 1984, 150(2): 161-166.
- [6] Niamh L, Naveen S, Hazel B. Diagnosis of vulval inflammatory dermatoses: a pathological study with clinical correlation[J]. International Journal of Gynecological Pathology, 2009, 28(6): 554-558.
- [7] Krapf J M, Mitchell L, Holton M A, et al. Vulvar lichen sclerosus: current perspectives[J]. International Journal of Women's Health, 2020, 12: 11-20.
- [8] Pešek M, Bouda J. Non-neoplastic epithelial disorders of the vulva-lichen sclerosus[J]. Ceska Gynekologie, 2014, 79(1): 57-63.
- [9] Jensen L S, Bygum A. Childhood lichen sclerosus is a rare but important diagnosis[J]. Danish Medical Journal, 2012, 59(5): A4424.
- [10] Maclean A B. Vulval cancer: prevention and screening[J]. Best Practice & Research Clinical Obstetrics & Gynaecology, 2006, 20(2): 379-395.
- [11] Li C Z, Bian D H, Chen W Z, et al. Focused ultrasound therapy of vulvar dystrophies: a feasibility study[J]. Obstetrics and Gynecology, 2004, 104(5): 915-921.

- [12] Günthert A R, Duclos K, Jahns B G, et al. Clinical scoring system for vulvar lichen sclerosus[J]. The Journal of Sexual Medicine, 2012, 9(9): 2342-2350.
- [13] Cattaneo A, Bracco G L, Maestrini G, et al. Lichen sclerosus and squamous hyperplasia of the vulva. A clinical study of medical treatment[J]. The Journal of Reproductive Medicine, 1991, 36(4): 301-305.
- [14] Cooper S M, Gao X H, Powell J J, et al. Does treatment of vulvar lichen sclerosus influence its prognosis? [J]. Archives of Dermatology, 2004, 140 (6): 702-706.
- [15] Qu Y J, Feng S, Xu R. Hyperspectral imaging method for noninvasive quantitative detection of vulvar lichen sclerosis: a pilot study[J]. Proceedings of SPIE, 2021, 11763: 1176399.
- [16] Bjorgan A, Milanic M, Randeberg L L. Estimation of skin optical parameters for real-time hyperspectral imaging applications[J]. Journal of Biomedical Optics, 2014, 19(6): 066003.
- [17] Kainerstorfer J M, Riley J D, Ehler M, et al. Quantitative principal component model for skin chromophore mapping using multi-spectral images and spatial priors[J]. Biomedical Optics Express, 2011, 2(5): 1040-1058.
- [18] Kuzmina I, Diebele I, Jakovels D, et al. Towards noncontact skin melanoma selection by multispectral imaging analysis[J]. Journal of Biomedical Optics, 2011, 16(6): 060502.
- [19] Séroul P, Hébert M, Jomier M. Hyperspectral imaging system for *in-vivo* quantification of skin pigments[EB/OL]. [2021-03-04]. https://core.ac.uk/ download/pdf/52641199.pdf.
- [20] Jakovels D, Spigulis J. 2-D mapping of skin chromophores in the spectral range 500-700 nm[J]. Journal of Biophotonics, 2010, 3(3): 125-129.
- [21] Kalleberg K, Nip J, Gossage K. Multispectral imaging as a tool for melanin detection[J]. Journal of Histotechnology, 2015, 38(1): 14-21.
- [22] Zonios G, Bykowski J, Kollias N. Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed *in vivo* using diffuse reflectance spectroscopy[J]. Journal of Investigative Dermatology, 2001, 117(6): 1452-1457.
- [23] Qu Y J, Meng Y Q, Feng S, et al. Therapeutic assessment of high-intensity focused ultrasound for vulvar lichen sclerosus by active dynamic thermal imaging and hyperspectral imaging: a preliminary study[J]. Frontiers in Physics, 2020, 8: 91.

第 59 卷 第 6 期/2022 年 3 月/激光与光电子学进展

特邀研究论文

- [24] Geladi P, Burger J, Lestander T. Hyperspectral imaging: calibration problems and solutions[J]. Chemometrics and Intelligent Laboratory Systems, 2004, 72(2): 209-217.
- [25] Vidal M, Amigo J M. Pre-processing of hyperspectral images. Essential steps before image analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2012, 117: 138-148.
- [26] He Q H, Wang R K. Analysis of skin morphological features and real-time monitoring using snapshot hyperspectral imaging[J]. Biomedical Optics Express, 2019, 10(11): 5625-5638.
- [27] Clancy N T, Arya S, Stoyanov D, et al. Intraoperative measurement of bowel oxygen saturation

using a multispectral imaging laparoscope[J]. Biomedical Optics Express, 2015, 6(10): 4179-4190.

- [28] Anderson R R, Parrish J A. The optics of human skin[J]. Journal of Investigative Dermatology, 1981, 77 (1): 13-19.
- [29] Jacques S. Skin optics[EB/OL]. [2021-12-18]. http:// omlc.ogi.edu/news/jan98/ skinoptics.html.
- [30] Qu Y J. Principles and clinical applications of superficial skin imaging in disease diagnosis and therapeutic assessment[D]. Hefei: University of Science and Technology of China, 2021: 53-58.
 曲颖洁.皮肤浅表影像用于疾病辅助诊断和疗效评估的基础及应用研究[D]. 合肥:中国科学技术大学, 2021: 53-58.